Boundary Value Problem with Displacement for a Third-Order Parabolic-Hyperbolic Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Finite Difference Method of Order Three for the Third Order Boundary Value Problem in ODEs

In this article we have developed third order exact finite difference method for the numerical solution of third order boundary value problems. We constructed our numerical technique without change in structure of the coefficient matrix of the second-order method in cite{Pand}. We have discussed convergence of the proposed method. Numerical experiments on model test problems approves the simply...

متن کامل

Positive Solutions for a Singular Third Order Boundary Value Problem

The existence of positive solutions is shown for the third order boundary value problem, u′′′ = f (x,u),0 < x < 1, u(0) = u(1) = u′′(1) = 0, where f (x,y) is singular at x = 0 , x = 1 , y = 0 , and may be singular at y = ∞. The method involves application of a fixed point theorem for operators that are decreasing with respect to a cone. Mathematics subject classification (2010): 34B16, 34B18.

متن کامل

A Well-Posed Free Boundary Value Problem for a Hyperbolic Equation with Dirichlet Boundary Conditions

We construct solutions of a free boundary value problem for a hyperbolic equation with Dirichlet boundary data. This problem arises from a model of deformation of granular media.

متن کامل

on a characteristic problem for a third order pseudoparabolic equation

in this paper, we investigate the goursat problem in the class c21(d)cn0 (d  p) c00 (d q)for a third order pseudoparabolic equation. some results are given concerning the existence and uniquenessfor the solution of the suggested problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Владикавказский математический журнал

سال: 2021

ISSN: 1683-3414,1814-0807

DOI: 10.46698/d3710-0726-7542-i